skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Matthew_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ectomycorrhizal (ECM) fungi have long been thought to reduce litter decomposition in nitrogen (N)‐limited ecosystems by outcompeting saprotrophs for litter N (a phenomenon known as the ‘Gadgil effect’). However, recent research has called the generality of this effect into question, by demonstrating that ECM fungi can increase or decrease organic matter decomposition in different forests. The ecological factors driving such variation in the size and direction of ECM fungal effects on decomposition remain unclear.Here, we tested the hypothesis that ECM fungi would suppress decomposition of N‐poor, recalcitrant litter more in forests with lower N‐availability by exacerbating saprotrophic N limitation. We conducted an in situ ECM fungal and root reduction experiment (via soil trenching) in nine pine forests across three US states, which varied in soil and litter N content, climate and pine host (Pinus muricatain California,P. elliottiiin Florida and P.resinosain Minnesota). In each site, we decomposed needle litter from (1) a pine species native to that site and (2) a common litter,P. strobus, for 1 year.Contrary to our expectations, ECM fungi either stimulated (California) or had no effect on (Florida and Minnesota) pine needle decomposition. Across sites, ECM fungal stimulation of decomposition did increase with total soil N content, but was unrelated to inorganic N availability. Furthermore, despite previous work suggesting that competition for N structures ECM fungal–saprotroph interactions, trenching effects on decomposition did not differ between pine litter types, despite large differences in initial litter C:N ratios, recalcitrance and net litter N immobilization.Synthesis. Taken together, our results add to a growing body of evidence that the ‘Gadgil effect’ is not universal, even in the N‐poor litter of temperate pine forests where it was first described and is often invoked. Furthermore, the inconsistency of relationships between trenching effects with different metrics of decomposer N supply and demand calls into question the central role of N in structuring fungal interguild interactions. 
    more » « less
  2. Abstract BackgroundV0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. MethodsTo identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type andevx1;evx2double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes inevx1;evx2double mutants and wild-type siblings. ResultsOur data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development,evx1;evx2double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes arehmx2andhmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression ofskor1aandnefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulateskor1aandnefmaexpression in V0v interneurons by repressing Hmx2/3a expression. ConclusionsThis study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type. 
    more » « less
  3. ABSTRACT Erysiphespecies infecting oaks in North America are common and widespread, but compared to Asia and Europe, the taxonomy and phylogeny of North American species is unknown. The present study addresses this dispairity. Comprehensive multilocus phylogenetic analyses, includingCAM,GAPDH,GS, ITS,RPB2andTUB, revealed a high degree of co‐evolution between North American oaks and theErysiphespp. that infect them. A concatenated multilocus tree and individual trees based on single loci revealed many highly supported species clades. The clades are formally named to conform with the current taxonomic classification. Available names, such asE. abbreviata,E. calocladophoraandE. extensa, are associated with corresponding clades, and are newly circumscribed supported by ex‐type sequences or, if not available, by the designation of epitypes with ex‐epitype sequences.Erysiphe densissimais reintroduced for a clade that corresponds to the old name ‘E. extensavar.curta’. Eight new species are described, includingErysiphe carolinensis,E. gambelii,E. occidentalis,E. phellos,E. pseudoextensa,E. quercophila,E. quercus‐laurifoliaeandE. schweinitziana. A new diagnostically and taxonomically relevant trait associated with the anamorphs of North AmericanErysiphespecies on oaks has been assssed. This is a special conidiophore‐like lateral outgrowth of the superficial hyphae, comparable to ‘aerial hyphae,’ which are also known for species of the powdery mildew genusCystothecawhich also infectQuercusspecies. 
    more » « less